Tag Archives: Barnard’s Star

Interstellar Probe “Vision” returns from Barnard’s Star

Houston, Republic of Texas — June 15th 2173. The third of mankind’s interstellar probes has returned today. “Vision”, the third of the initial trio of interstellar probes, has been exploring the Barnard’s Star since its departure in 2172.

Barnard’s Star is a flare star, and as such scientists did not expect it to be orbited by worlds harboring life. In addition, due to the star’s small size and low temperature, no worlds capable of human life were expected there either. The discoveries made at Barnard’s were not much of a surprise, therefore, and on the surface the “hostile” system may even seem like a disappointment after the rich discoveries in the Alpha Centauri system. However, this is not quite the case.

“Without any garden worlds, a result we expected, Barnard’s Star is still of vital strategic importance. It is within jump distance of Alpha Centauri A/B, Proxima Centauri, and Sol on the one hand, and Ross 154 on the other. “The star’s system will always be the ugly duckling,” one Colonial Authority scientist commented, “but all traffic going to and from Terra and the new colonies at the three Centauri stars is going to pass through Barnard’s, Ross 154 and Lacialle 8760.

“Only after Lacialle 8760 do we find multiple stars within Jump range again.”

In other words, unless a method is found to increase the range of jump drives – something theoretical science makes as impossible as traveling faster than light in our own space-time continuum – all ships that set out to explore, colonize and trade with the galaxy have to pass through those three systems, and with that traffic and the support that ships need, comes money.

And there is another aspect too. Any hostile fleet heading for Earth would have to take the same route.

“Barnard’s Star may well be our last line of defense before any aggressor hits Earth,” the official concluded. He declined to speculate about who those potential aggressor could be.

The planets of Barnard’s Star are:

  1. Glacier (0.05 AU): 10000km diameter, density 1, Gravity 0.83. Dense atmosphere, 70% ice sheets, 3 moons.
  2. Failed Core (0.11 AU): 7000km diameter, density 0.3, Gravity 0.18. Thin atmosphere, 50% ice sheets, no moons.
  3. Failed Core (0.3 AU): 7000 km diameter, density 0.3, gravity 0.18. Thin atmosphere, 70% ice sheets. 1 moon.
  4. Failed Core (0.6 AU): 14000 km diameter, density 0.2, gravity 0.23. Standard atmosphere, 90% ice sheets. no moons.
  5. Ice Ball (1.3 AU): 3000 km diameter, density 0.3, gravity 0.08. Vacuum, 100% ice sheets, no moons.

Out of the five planets, the innermost seems the most interesting for future bases. Its three moons, although smaller than Luna, lend themselves for orbital defense and spaceport facilities, while the relatively high gravity of the planet makes it easy for humans to adapt to life there.